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In this paper, we study certain semidiscrete methods for approx1mat1ng the

solutions of initial boundary value problems, with homogeneous boundary condi-
tions, for certain kinds of parabolic equations. These semidiscrete methods
are based upon the availability of several different Galerkin-type approxima-
tion methods for the associated elliptic steady~state problem. The properties
required of the spacial discretization methods are lis*ed and estimates of the
error made by the resulting semidiscrete approximations and of its time deriva-
tives are given. In particular, estimates are given that require only weak
smoothness assumptions on the initial data. Verifications of the required

properties for various Galerkin-type methods are also given.
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SIGNIFICANCE AND EXPLANATION

Many physical situations can be modelled by the solutions of initial
boundary value problems for parabolic partial differential equations. Examples

of such situations arise in the theory of heat conduction and other diffusion

B e e

processes. The physical parameters involved are often dependent on the time é
variable.

The construction of semidiscrete approximations to the solution of such

parabolic equations is studied in this paper. These approximations arise from

RSy I

certain spacial discretization techniques and they are governed by ordinary

differential equations. Estimates for the approximation errors are given for

L an e

various classes of initial data, including classes that require only weak

smoothness assumptions. ;
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CONVERGENCE ESTIMATES FOR SEMIDISCRETE
PARABOLIC EQUATION APPROXIMATIONS

Peter H. Sammon

I. Introduction by

4 Let Q be a bounded domain in d-dimensional Euclidean space with a sufficiently i 3
smooth boundary 3R and an outward pointing normal n(x) = (nl, . .., nd). Let iy
T > 0. We shall consider semidiscrete Galerkin-type approximations to the solution of 3

4 the following parabolic initial boundary value problem:

W t~10,

d
-u, = L(tlu - J D (a (x,£)D,u) +
t . 1 ij 3j izl
(1.1) (1) :
+ ao(x,t)u in 2 x (0,1] ,

aoi(x,t)Diu é

under one of the following boundary conditions:

d
(1.1) (ii)  ulx,t) =0 or ) a;. (x,£)n, (x)D ulx,t) =0, for 0<t<t .
a0 i,3=1 J 30 o

and with the following initial condition, where v is a known function:
(1.1) (iii) u(x,0) = v(x) for xe Q . i
(All functions considered in this paper will be real valued). We will put varicus

E kinds of restrictions on the initial data function v later, as well as a coercivity
a a _
assumption on the coefficients of L. We will assume that {a,.]} , {a .} and i

1,951 %=

a, are sufficiently smooth functions on 2x10,7], that ajy = ay; for 1 <i, 3 <4
d
and that the matrices [a.j] form a uniformly positive definite family on
i,j=1

"« 10,1]. If the Neumann boundary conditions are under consideration, we shall also

assume that

3 I D A AR P el 5 R 8

( aj (%, t) = alx,0)d, (x) for 1<i,j<d and (xt) ¢ g x [o,11 ,

1]
3 (1.2) 1 {
' i aOi(x,t)’ 20 for 0<t<T , i
i L an ;
] !
| v Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material i
’ is based upon work supported by the National Science Foundation under Grant No. i
MCS78-09525. i
i
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d
where [Si.(x)] is a symmetric matrix of sufficiently smooth functions on Q
i,j=1

and a(x,t) is a sufficiently smooth function on & x [0,7].
Suppose we consider the following elliptic boundary value problem associated
with {1.1): Given 0 < t < T and a suitable function f, find a function w which

satisfies L(t)w = Lw

f on @ and the appropriate homogeneous boundary condi-
tions on 3Q. There are many well studied techniques for finding an approximation,
in a finite element space, to the solution of this problem (see the surveys in (2]
or {3], for instance). Moreover, the authors of [3] have shown that it is possible
to take such a technique and use it to generate a time continuous family of approxima-
tions to a solution of (1.1), at least if L has time independent coefficients.
They proved that this semidiscrete approximation to (l1.1) can be a good one at
positive times, even if the initial data function v 1is not smooth on { or does
not satisfy suitable boundary compatibility conditions. This indicates that the
smoothing property of the parabolic problem can be utilized. (It is known that
solutions of (1.1) are smooth in space and time for positive times, even if v is
not smooth and compatible in space). They also proved uniform in time results for
naturally restricted classes of initial data.

We intend to study the case of time dependent non-selfadjouint operators in this
paper and show that many of the results of [3] are still valid, under similar
hypotheses on the data of the problem. We will begin by setting some notation and
then we will describe some results concerning the smoothing properties of the problem
given by (1.1). (These results are known, but we shall give some derivations that
will allow us to prove similar results for the discrete setting). \le will then make
some abstract hypotheses concerning finite element approximations to the associated
elliptic problem, define the semidiscrete approximation and prove (optimal order)
convergence results for restricted classes of smooth initial data as well as for

nonsmooth initial data. It will then be shown that many of the known Galerkin-type
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approximations satisfy the abstract conditions. All of these estimates will be done

. 2. . , . ) . ;
in a L7 (2)-setting but we will conclude by discussing some error estimates in the

maximum norm,

We refer the reader to [3) for a discussion of related work done by other
authors. This work represents an extension of work done in [8] under the supervision
of Professor J. H. Bramble.

We conclude this Section with an observation concerning scaling arguments. 1f

. . -XKt . . .
u(t) 1is a solution of (1.!) then wi(t) e u(t) is a solution of the following
evolution equation:

wt(t) + (L{t) + K)w{t) = 0 ,

for any K ¢ R. This relation, as well as a similar one which will hold for the
semidiscrete approximation, will be used later. v:

We will use the symbol C to denote a generic positive constant throuchout this
m
2
work and we will define L ()0 if m < m

uml

-
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II. Parabolic Regularity

We will now fix some notation and discuss some of the properties of the parabolic
problem defined by (1.1). We will not cite specific references for the results con-
cerning the elliptic equation theory, but most of the statements we make may be found,
for instance, in [6].

2,p g tP P -

We let W =W (2) be the usual L" (Q)-based Sobolev spaces on [, where

1<p<> and ¢ > 0 is integral. We give them their usual norms, denoted by

2,2

We will write HQ for W (the Lz(Q)-based analysis will play the

”'“Q,p‘
largest role in our work), "."l for “.“1,2 and il for H'HO. We will also let
Il dQenote the L2(Q) > LZ(Q) operator norm. We will use the space Hi, which 1is
the subspace of Hl consisting of functions that vanish (in the sense of trace) on
32, if we are considering the Dirichlet boundary conditions. We will also need to
consider the space LZ(BQ), whose norm will be denoted by "'“0,32 and Hl(aﬁ),
whose norm will be denoted by “."l,aﬂ' We let (+,*) and (+,*) denote the usual
Lz(ﬁ) and Lz(an) inner products, respectively. Finally, if X 1is a Banach space,
we will let C2+E([a,b],X) and C2+€((a,b],x) denote the usual spaces of X-valued
functions that have a Holder continuous &-th derivative, where & > 0 1is integral
and 0 ¢ ¢ <1 and B(X) denote the usual Banach space of bounded operators on X.

We shall assume throughout this work that the initial data function v ¢ LZ(Q).

We now need some concepts that pertain to elliptic equation problems that are

1

associated with (1.1). We begin by defining some bilinear forms on H1 x B”, Let

0 < t<t and set

d d
D(t)(+,0) = ] (05 (+),D;(=)) + L (agiD () (D) + (ag(), (+)),
i, =1 i=1
d d
D*(t) () = (a,,D,(+),D, (+)) = D, (), (+))
i,§=l R izl P0i®
d
+ (ag = [ Diag )1, ()
i=]1
-4-
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As usual, D(t) 1is associated with a weak formulation of a boundary value problen

for L(t). D*(t) bears a similar relation to L*(t), the formal adjoint of L{t),

defined by L*(t) = L{t) - G(t) where

- f L @
L(t)(*) = - D.(a,.,D.(*)) + (a, - = § D.a_.)(+),
i,3=1 i 713] 0 2 i=1 i 01
d 1 d
G(E)(+) = § ayD () +3 ( I pjags) ()
i=1 i=1
_ , 4 _  E
We shall assume that aO = (a0 -3 Z Dlaoi) >0 on Q x [0,71] if we are working 3

i=
with the Dirichlet boundary conditions or that 50 >0 on 2 x [0,T] if we are work-
int with the Neumann boundary conditions. Thus D(t) and D*(t) are (strongly)
coercive forms over Hi if we have the Dirichlet boundary conditions or over Hl if
we have the Neumann boundary conditions.

Since we wish to regard L, L* and L as unbounded operators on L2(2), we
must discuss their (common) domain of definition DL' If the Dirichlet conditions are

. . 2 . :
under consideration, we let DL = H n Hi. If we are considering the Neumann problem,

d

2 - - .

we let D = B2 {w e B2 . ) a,.n,bDw =0}. Then L, L* and L are indeed
i,j=

1 I s

2 . . . 2.
closed, unbounded operators on L () with a common domain DL' L* is the L™ (0)-

adjoint of L and L is selfadjoint. We will give D the H*Hz—norm and, for

convenience, we will give G(t) and G*(t) Z -G(t) the domain DL'

We will now identify a space intermediate £o LZ(Q) and DL that will be useful
later. Let O < t < 1. Since L(t) is selfadjoint and positive definite, we can
use spectral theory to define L %(t) on its domain D(L %(t))c LZ(Q) and we can dgive

_1
the latter the norm IL “(t) (). If g ¢ D , then

gl? = dg,9) = % (D + D*)(g,q) = llglli

[

e

where we have used * to denote a norm equivalence. Thus it can be seen that

-5-
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D(L *t)) is the "-Hl-norm closure of D, and the HL “(t) (+)N -norm is equivalent to

X . . : . 1 .
the H'Hl—norm. We will write Hi to denote this space, which is v if the

Dirichlet boundary conditions are under consideration or Hl if the Neumann conditions L
are being used and we will give it the H°Nl—norm.

We let T(t) denote the solution operator for the elliptic boundary value problem
associated with L(t), for 0 < t < 1. Thus T(t) 4is an operatcr from right

L . . 2+ .
hand sides g ¢ H', for any % > 0, to solutions in H 2 A DL that satisfy o

L) (T(t)g) = g. We define T*(t) and T(t) analogously and note that T*(t) 1is
indeed the Lz(ﬂ)-adjoint of T(t) and that T(t) is selfadjoint. (We will continue
to use the symbol * to denote adjoints taken with respect to the L2(Q)-inner product) .

. j
. - d
Let j > 0 and let L(J)(t) E (az) L(t) denote the operator obtained by dif-

ferentiating the coefficients of L(t) with respect to time. We give this family of

operators the domain D and we define L*(])(t) and i(j)(t) similarly. If we

L
1+2
regard T(t) : Hl - H n D, for some 1 > 0, we can verify that T(l) = (Ji)T
L - dt
exists (in the operator norm) and is, in fact, T(l) = -TL(I)T. We can continue

differentiating and show that T(j)(t) exists for each j > 0. Similar statements
hold for T*(t) and T(t).

We can now use the work of Sobolevskii [10] to study the solution of (1.1). The
solution u of (1.1) can be described via a family of fundamental solution

2 .
operators U(t,s) < B(L"(Q)), defined for 0 < s < t < 3. In fact, the operators U(t,s)

; . 2
are stronglv continuous in L (?) for 0 < s

Y

t < 7, are continuously Aifferentiable

. . . 2 ;
in each variable in B(L (?)) and have range in DL for 0 < s < t < 1 and are

characterized by the following equations:

u{t,s) + L(t)U(t,s) = 0 and U(s,s) =1 for 0 < s < t <1

(2.1) Tt

The unique solution of (1.1) is given by u{t) = U(t,0)v, for O 7 t < 1. We note

3
that U(t,7)U(Z,s) = U(t,s) for N < s < < t< 1 and that 75 u(t,s) = U(t,s)L(s) .

on D for 0 - s - t - °

-6~
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We can use such fundamental solution operators to describe the solution of a more

general problem than (1.1). The following equations:

{ (2.2) (i) w, * L(t)w = £(t) for 0 < t<1 and w(0) =w, . t
¥
E where Wy € L2(2) and f € Cg([O,r],LZ(Q)) are known and « > 0, have a unique
F solution
i . 2 1 2
(2.2) (ii) w e CCI0,T),L7H)) n €T ((0,1],L7 (@) n C((0,1],D)
given by
.t
(2.3 wit) = Ult, 0w, + J Utt,s)f(s)ds for 0 < t <7
0

1
B ’ o ’ ’ if = = ’ T,
if v DL then w c([o,1] DL) and i ¥ f£(0) 0, w ¢ C({0,7] DL) for

7+ 2
some €, 0. Moreover, if % > 0 and f < C 1([O,1],L (1)), then

i

w. co,00,0%))  and

d 1 ~i~1 d 3
(z.4) 1) wll < et “rdwll + sup B{ZT) £s)) for Nt o,
-dt - 0 ds -~
g Des<t
i 0 jai+l
i (3) dy?
for some constant C(%). (We will often write w (t) - [-*) w(t),

dt
(3) gy’ (3) 3,7 4 ,
u () = (EE] u(t) and U (t,s) = (7;ﬂ U(t,s) for Jj > 0, in the future).
We also note that other results from [10] show that if w has the continuity
properties described in (2.2)(i1) and ;t +Lw=0 for 0< t < 1 where %

@0 - ub = 0)), then W - ¢ lo,11,L21))  and  (wie)) - ¢ (1o,71,p), for

some < ~» 0. Thesec results allow us to derive the following:

Provosition (2.1): If w_ .- D, €. CA(iO,wl,Lz(l)) for some « > 0O and

0 L’

L{Nw,_ = £LO} - Hl, then the solution w of (2.2) is in C l([O,T],D ) for some
N * L

. RN
: 1

Proof: Let v, * Litly =0 for 0« t- 1 and y(0) = L(Dug ~ £(0) - . Then if

z - w(t) - wO + ty(t) for N - t - 1, there is an ‘5 > 0 so0 that

i R RS oA e na. L
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and  z{0)

2z

e a———— 5 M

L o LS

R

€

¢ t Lz = (f - LwO +y + (L-L)(ey)) 2 g« Cvz([rJ,T],Lél.)i

‘ !

3 R
(") = 0. Thus =z - C ([O,T],DL) for some - » 9 and the rooglt

We will soon want to examine further conditions under which the solutingn o7

is smooth at

terms of data.

this analysis.

t = 0 and we will al . want to estimate the size of this solution

We shall study another result about solutions of (2.2) to carry .t

1 : :
Proposition (2.2): If f « C ([O,T],L2(2)) is such that there is a (unigue) solution

w € Cl([O,TJ,Lz(i)) N C([O,T],DL) of (2.2) satisfying w(0) = w_ = 0, then for each

o

= > 0, there is a constant C = C(¢) > 0 so that

(2.5)

(2.6)

fwit)l < ¢ sup HITE(s)Il + € sup sH(Tf)S(s)H for 0 < ¢t

‘/\
4

0<s<t 0<s<t 1

Hw(t)lil < C sup HTf(s)Ill + ¢ sup slII‘fs(s)lll for 0 <t <t

O<s<t O<s<t

Proof: We see that th +w=Tf and w(0) = 0. We will analyze this equation using

energy techniques that were used in a similar argument in [3).

We first see that if 0 < t < 1, then

(2.7

The equation,

(2.8)

t t
dwes? = [ nwiZas + [ s = fwis)iZas
ds
0 0
(2.2), shows that
14 2 14 2 4
5> as Fwil = < > 3s Hwll ™ + (Tws,ws) = (Tf,w ) i

= (Tf,w) - ((Tf) ,w) for 0 < s < 1
s s —

Thus, if we integrate (2.8), we find that

(2.9

Since Tw
t

+

t

8]

w

t t
4 2 2
s Zuwlas < Suw® v cara? v o[ nreas + o [ lwilas
0

0
2
+St sw s II(Tf)sl|2
Oisit

= Tf - EGw, we see that

-8-
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(tw,w) - & (3D
s 2

2
w,w) o+ flwll

N |

(2.10) (Ews,w) vl ? =

= (Tf,w) - (TGw,w) for 0 < s <t

We now analyze the individual terms in (2.10). We have the following estimates, wherc

"1 > 03
(2.11) @V = @M E0 < it
< C(LTw,Tw) = C(Tw,w)
{2.12) - (TGw W) < C(Tw,w) + - (TGw,Gw)
(2.13) (TGw,Gw) = - (G TGw,w) < cu%cwul il

—_ - 1 - 1
< C(LTGW,TGwW)  llwll = C(TGw,Gw) > liwll

(that is, (TGw,Gw) 5>cuwu2) and
(2.14) NTEl = T + G)TEl < cllTgl
Thus, returning to {2.10), we can now see that a suitable choice for 9 0

leads to the following:
= 2 - 2
(2.15) (Tw,wh o+ Wl ™ < CU(Tw,w) + cli sl for 0<s <1

This implies that
t 2 t 2
(2.16) J lwi“as < c [ iTEN“as
0 0
We can now obtain (2.5) from (2.7), (2.9) and (2.16).

We now turn to (2.6). We first see that if 0 < t < 1, then

ct l? < t(Gw,w)

¢ EEYeY R
= f (Lw,w)ds + f s(L' 7 w,wlds + 2 f s(Lw,w_)ds
s
0 0 0
t t _
<c [ (Twwds +2 [ s(iw,w)ds
- s
0 0
Since wo Iw = £ - Gw, we see that

e R

e vir RN

N
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wi® + (Twow ) = (TE,L*w)_ = (TE_,L*w) - (Gw,w_) for 0 < s <1
s s s s s -
“hus integration gives us the following, where € > O:
t t
- - 2
{ slw I2as + 2 [ s(lw,was < L @ww + cuiral ‘
s s -2 1 ]
0 0
t t t
- 2
scf nreiias + ¢ [ (@wards + ¢, [ séTe_2as
1 1 s 1
0 ¢} o]
Returning to (2.2), we find that
1
5 é% Hw“2 + (Lw,w) = (Tf,L*w) < CHTﬂli + % (Lw,w) for 0 <s <1 ,
which gives us the following estimate:
t t t £
- , 2 i
[ @wwas = [ @wwds <c[ ITHijds ;
0 0 0
We can now obtain (2.6}, which completes the proof. b
We now study results that hold for the solution u of (1l.1).
Proposition (2.3): We have the following for 0 < t <1 and m > O:
m=1
+ -2 9
(2.17) u(m D + Lu(m) = - Z {?} L(m )u( ) '
=0 "
(m) 7 fm (m=2), (2+1) 1
(2.18) T ) [J (LT Ju . 3
=0 4
. m+1 2 . : . .
Proof: Since u - C ((0,1)1,L7(2)), we can obtain (2.18) by successive differentia-
5 tion of the equation ’I'ut + u = 0. This shows that u « Cm((O,T],DL). Successive a
differentiation of (1.1) then gives (2.17) and completes the proof.
Proposition (2.3) will be used extensively, in conjunction with elliptic regularity
results, to translate information about derivatives in time of u to information about
spacial norms of u. For instance, an inductive argument shows that
T
‘ ”u(t)ll( om WLC»/L,) lu <t)”(01‘. for m > 0 and 0 < t < 1
lamer) "7 (1)

-1(}-
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We now derive a series of estimates that relate norms of the soluticn u at one

time to norms of equal or less weight at an earlier time, giving up a constant that
contains a pole in the time increment. These estimates will prove important in later

applications.

Proposition (2.4): If O < & <m and 0 < s < t < 1, we have that
. 2, (m) ‘
(2.19) (t - s) MHu it , (t -8 Hu(t)HZm
-m=-{ (1)
cc § oS < catsi, oL
3=0
i (m) g
(2.20) (t s} I (t)lll , (£t - s) HU(t)H2m+1
m )
< C ‘f Bat (ol = cllus)ly, oy
=0
(2.21) (€ - 5™ gy t™ (0l - clus)l .

Proof: We will prove (2.19) and (2.20) first and it will suffice to prove thesc
results with m >0 and 2 =0 or 1, for just the time derivatives. If = > 1,
the interval [s,t] can be split into ¢ equal pieces and the results for [ =1
used ¢ times. Equations (2.17) and (2.18) and elliptic regqularity can be used to
obtain the results for the spacial derivatives. We note that we are avoiding the case
s = 0, so we have sufficient smoothness.

i If m>0 and O - t < 1, (2.17) shows that

m-1

1 d (m) 2 (m) (m) (3) (m)

Sac e e e an e e T e
j=0

m, .2 gy 2
<ca™ @ e §one e’ .
j=0
We can now obtain (2.19) for m > 0 and ¢ = 0 by an induction argument. (Note that

‘ Tu)lh < fluts)ll for 0 - st - 7).

gl o

—
Yy




We alsoc have the following for 0 < t < 1: ' ;
+1 2 1 = (m m
Hu(m Yon® o+ 5 (Lu ),u( ))t

m=-1 . h
<o T o, ™ s a ™2 s Ly mey2 :
— . 1 4 1

j=0 ;

Lo m+l), 2, = (m) (m) mb )2
<=lu 19+ cu " yu )y +¢ § Hull
— 2 =0 1

Thus, we can again use an inductive arqument to obtain a result, in this case (2.20)

with m >0 and 1% = 0.
(

m . :
Now set w(t) = tu )(t +s) where m>1l, s>0 and 0 <t < 1 - s. Then 4

m-1 . .
W+ Lw= -t ) [W) Lm0,
j=0 Y

m=1 . . m-1 .
= -t Z [TJ L(m_J)u(]) - Z [mjl] L(m-‘l-J)u(J) = f for 0<t<T~58
j=o0 j=o J

and w{0) = 0. Using Proposition (2.2), we see that if O <g<t=-s, then

(m) 5 1
Iw(e)h = gu ™ (g + )l <c § fu'? sy + 7 sup glu (g + )
j=0 0<z<g

This gives (2.19) with £ =1 and m > 1, after a change of variables is made. We
now derive (2.20) the same way, using the H-N1~norm results of Proposition (2.1).
To prove (2.21), we observe that (2.17) and (2.19) show that

( (

- ™ ™ on, <cie - 9™ L™ @i < duesn

(

m
and that (t - s} llu m)(t)ﬂ < Cfu(s)ll, for 0 <s <t < 1. Thus we can use an

interpolation argument to see that

3 (

fa

™o < c@on™ @™ @)

Poaa™ e e ™ en?

' <™ @ ™ et <o - o™ g .

This completes the proof.
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We will now study when u is smooth at t = 0. The initial data v must <atisfy k

boundary compatibility conditions for this to occur. We will use certain {unhounaed)

"time differentiation" operators A(m)(t), defined for m > v and U <t < 1, to

Cas . . . (
study these conditions. These operators will satisfy the equation u(m)(tJ = A m'(t)uft) i

for 0 <t < 1t and their form will be motivated by (2.17). Fix 0 < t < 1, let

A<O)(t) I on D(A(O)(t)) z L2(Q) and let

m N .
AL L ) [mJ L3 a3
j=o0 U

provided that {A(J)(t)}?=0 are given, be defined on the domain

pa™ M )y s wi wen@™ie)) ana A™ (t)w e D, }
We note that A(l)(t) = -L(t), A(2)(t) = (L2 - L(l))(t) and that elliptic regularity
shows that D(A(m)(t)) c H2m for m > 0. Moreover,

Py = % - (m)

Cc(ﬂ) = {feC () : supp f ¢ &} ¢ D(A (t)) for m > 0

We will now use these time derivative operators to characterize when the solution

u of (l1.1) is smooth at time zero.

Proposition (2.5): (1) If v ¢ D(A(m)(O)) and A(m)(O)v € Hl for some m > 0, then

*

1 (2.22) u e A™([0,11,50) n c(fo, ], 1™
; and u < d"N(f0,11,p) if m> 1.
(2) If v ¢ D(A(m+1)(o)) for some m > 0 then
m
(2.23) e ™o ar,f @) ¢ (10,71,0) n c(ro, 1,1

We note that this Proposition indicates when the restriction "s > 0" can be
removed in Proposition (2.4), via the taking of limits, when v satisfies the correct

‘ compatibility conditions.

. (m+})
In the future, if we say that v ¢ D(A

(m)(t)) and A(m)(t)v € Hi.

(t)) for some m >0 and 0 <t <71,

‘ we will mean that v ¢ D(A




Proof: Our previous discussions indicate when equations of the form (2.2) have limits

in DI as t > 0; that is, when Wy o€ DI and f ¢ Ce([O,r],Lz(n)) for some ¢ > O.

c 1
Now we will study the 4, case. If z ¢ Dl’ (2.20) shows that lIU(t,O)zII1 < C|Iz||1

for 0 < t < 1. Thus, by density, U(t,0) : Hi > Hi is uniformly bounded for
. . 1 R . 1
0 <t <. Since U(t,0)z >z in H, as t -0 if z ¢ D . Ult,0)z » 2 in H, as
: 1 . C e 1 - 2
t >0 if 2z ¢ H,. Thus if w satisfies (2.2) where Wy 7 U, and f < C([0,7],L7())

. 1
for some ¢ > 0, w(t) = wO in 1, as t - 0.

Equation (2.17) now suggests an induction argument which would use the above
1 ) . . C s (m)
H, and DL convergence results, which would fit with our definition of D(A (0))
and which would complete the proof. However it would be ncecessary to know when the

: . . Cs v 2 . . .
right hand side of (2.17) is in C ([(0,:],L (")) for some . * 0, since the induction
hypothesis would only indicate that the right hand side is continuous. The reduired
result is discussed in Proposition (2.1), so the induction argument can be carried out.

Thus, we can prove the results on the time derivatives of u.  Eouations (2.17)
and (2.18) and elliptic regularity then comjlete the proof.

. . . 2 - .

We now wish to identify the 1L7( )=adjoint of U, the fundamental solution
operator. This identification will rrove uscfnl later in some bootstralpina arcuments
{(as in Helfrich [5])). We state it here and surgdy a proof.

Let IL(t) : L*(r - t) define another family of differential operators.  We note
that these operators have all the jroprr*ics rouired of the family T1.(t):. Thus the
equations

Ult,s) + L{OIU(t,s) = 0 and Uls,s) - 1 , for O s - t = 1
define a fundamental solution orcrator U to which parabolic reqularity applies. We

have the following result,

Proposition (2.6): U*(t,s) = U = 5,0 - t) for O s <t - 1.
. _ G
Proof: fet G(t,s) = U*(r - s,¢t - t) for u < s - t - 1 and note that ;? Ult,s)
2 - . 2

exists in R(L7( })) if t 5. Thus if f . L), g DI and s < t, then

~14-




(U £,9) = (E,0(r - s, - €),9) = (Of,L*(t)q) = (LUE,q)

the last step is valid since the previous steps showed that Uf € DL' Thus, 0

satisfies (2.1). Moreover, if 0 <s<t<T1 and f and g ¢ DL' an estimate from

[10] shows that |(U(t,s)f - £,g)] < C|t - s] W€l Ngl. Thus U 1is strongly continuous

on D for 0 < s <t <7T. Since Héh = Wull <1 for ©0<s <t<t, U is strongly

. 2 ;
continuous on L (.)). This completes the proof.

o ey et

We conclude this Section with results of a technical nature concerning the fine

structure of the A(m)(t)—operators. Let 0 <t <t and K > 0. Define

L+(t) : L{t) + K on D and let T _(t) e B(Lz(Q)) be the associated solution 4

. 2 . j j
operator; that is, L+T+ =1 on L (). We define Lij)(t) and Tij)(t) as before,
. 0 . . . .
for j > 0. Let §+)(t)= I and, for m > 0, define the following (inductively) on

ATy, ;

m
[m) 2 AW g -2 (]
+
0 g=

D(

(2.24) A
N

n
(t) = - ,Z I3 + +

Im] L) (2) o tm)
0

m
Note that Aim)(t)(e—Ktu(t)) = (f%] (e Ktu(t)) if m>0 and O < t <t and

if m>0 and O < t < 1. Letting v range over D(A(m)(O)) shows that we can

take t = 0 in (2.25). Suitable translations of the origin t = 0 then show that

m
2

(m)

m "
(2.26) A ™ (e) = ¥ { ) Km'lAi"(t) on D(A ' (t)), for O <t <1
=0

+
Now let Eio)(t) T 1, Eil)(t) 2 1,(t) and, for each m > 1, define Efm Diey as

-(3) .(3)

R -1
(£ - (h+ (t))

2
follows on DL, whenever each ¢ exists in B(L (2)), for

0 <3j<m:

‘ (m+1) ("3
)

(2.27) E+ (e) -~ L+(I + m‘I‘+ +

(o1,™ 1 [m] o @=2) = (2+2) = (m)

4 + + o E+ )

We have the following:




Proposition (2.7): For each m > 1, there is a K = K(m > 0 so that the following

hold for 1< ¢ <m, O0<t <1 and K > K :

E(,Q) : i+2

(2.28) + H n DL + o exists and is bounded for i > 0 ,

- i i+ X
{(2.29 E+(2) : H - Hl 2 n DL exists and is bounded for i > 0 ,

(m) _ m {m) (1) (m)
(2.30) A = (-1) E, «o. E_ on D(A )

2 .
Proof: Let 0 < t< 7, K>0 and f ¢ L7(2). Since L+T+f = LT+f + KT+E,

2 2
(€ +K)IT HI° < (LT,E,T £) + KIT £1° = (£,7,6) < I£l T £l

Thus (C + K} UT £l < Clfll. Also HT £, < CILT fll < Clifl. Moreover,

L T, fl = Ifl and if 2> 1,

L T(Q)f < [
. <

(2-3),(3)
| A ] (AL NAF
3=0

]

(Q”

so that by induction, I|L+T+

<cC £ > 0. Thus

) ()

'3
e+t =+ nrrMH < for 20

(1)

We know that E, is well defined, (2.28) and (2.29) are satisfied,

:(1)N < C. We will now assume, for some 1 < ;. <m -~ 1,

A(1)

B (1)
. = -E, and (C + K) IIE

L .
that E:l),...,Ej ) are well defined, (2.28) and (2.29) are satisfied,
A(J)

A(j-l)
+

_ g
+ +

for 1< j <& and (C+ K) "E:(J)” < C for 1 <3< 1.

Equation (2.27) then defines Eil+l)

E(Z+l)
+
E(2+1)
+

and the inductive assumptions show that (2.28)

follows for

(1) . R(2+l)

=L 4+28LT G+
+ +4 +

where (C + K) HR+

(2+1)
+

Note that

Bi2+1) I

=L +
+
(1)

< C and llL T
- + +

I < C. Thus we can choose K > 0 so that 2IB Il'< K. Then

2 ; ; ;
for any g « L7(2), there is an unique w ¢ Hi that satisfies:

(2.31) D(w,¢) + K{w,¢} + (B+w,¢) = (g,¢) for all ¢




PRI T . G J

EETY TN SRR

since the form on the left hand side of (2.31) is coercive over Hi. But since : 1
D{(w,¥) = (g - Kw - B+w,¢) for all ¢ « Hi, elliptic regularity implies that : %
w € DL' Moreover, : é

(C + K/2) lhvll 2 < D(w.w) + Kiw,w) + (B w,w) = (g,w)

so (C + K) llwll < cligll. Thus Eig+l): DL»>L2(Q) is invertible and (C + K) HE:(t+1/
< C. It is now easily checked that (2.29) holds for E:(k+1).
We will now study (2.30). On D(A(2+l)), we have that ’
E(Q+1)A(Q) - L (A(l) . 2T(l)A(Q)
+ + 0 + 4
b2 p-3-1 &) | (2-3)_-(3+2) -(2) (1)
+ ) (- ,J T, E, - EALD) C g
3=0 ’ -
=1 ¢ . . ’ ;
L+(Aig) + [%J Tig J)Ai3+l)) . S
=0 U
But since
2-1 3 s . 1 _ s .
- I%J L+T:z J)A:]+l) [%J L+T12 3) f l;} Lij l)Afl)
j=0 j=0 Y i=o 4
-1 -1 ¢ (. . -
L 2= -
R RSO R
i=0 3=i U
2-1 ¢ 2-1-i A L. . ;
3 2= [
.y li) L ) I jlj Ti 3 1)Li)))Ail)
i=0 j=0
2-1 . . .
_ [%) Loerp T L L)) )
. i Ce e +4 +
i=0
-1 : :
S- 3 m L:a-l)Aix) )
i=o \*

we see that A(Q+1) = -E(2+1)A(l).
+ + +

The proof can now be completed by induction.
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Under the conditions of this last result, we see that if m > 1, the operators
m . .
Ai ) can be factored into operators that are each a bounded perturbation of L and
which .re in fact L if we are dealing with time independent coefficients. Moreover,

if we regard AEM) as an operator from D(A(m)) (to which we give the N-Hzm-norm)

to Lz(l) if m> 0, it has a bounded inverse which we will denote by A;(m)

o AR VIt K g SRR S




III. The Semidiscrete Approximation

In the last Section, we discussed some properties of the parabolic equation we
intend to study. Now we are going to examine a method of constructing an approxima-
tion to its solution, given a method of approximating solutions of the associated
elliptic problem. We begin by stating the kind of properties we expect such elliptic
approximation methods to have, although we defer verification of these pronerties
for several standard methods to a later Section. We then define the semidiscrete
approximation to the solution of the parabolic problem and begin our study of it.

We assume that we are given a finite dimensional subspace S_ = L2(Q) (that

h

depends on a small parameter 0 < h < 1) and a family of approximate elliptic dif-

| ferential equation scolvers §Th(t)} that are (at least) bounded operators on
1 Ostsr
2
L {2). We will give Sh the L2(Q)-inner product. We will further require that the
L following hold for 0 < t < 1 :
3.1) (1) T 2@) » s
A >
(3.1) (i Th(t) ’ h(t) s LT(R) ho
(3.1) (ii) (Thf,f) >0 for f «r LZ(Q) with strict inequality if O # f . Sh .
. - -1
Since Lh = (Th Jh) : Sh - Sh exists, we can ask that
o (3.1)(iii) % s (D L)+ s o+ s exists for 1 >0 .
i h dt h h h -
Finally, setting Gh(t) z % (Lh(t) - L;(t)), we will require that
(3.1 (iv) g (el ?, lel? < (L (8)v,), forall 0<t<t and ¢ ¢ S
. h ’ ¢, Lh Wy <t < ho’

where C+ is some (strictly) positive constant.

2 . . . .
Given f - L (), we will regard Thf as a function in S that approximates

h

‘ the solution Tf of an elliptic differential equation problem.

We now make some observations concerning the (Th(t)} and {Lh(t)} operators.

.
E ‘ Let P : L2(2) > Sh denote the orthogonal L2(Q)—projection onto Sh and let
4
|
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Q@1 1 -P. Then Th = PT P, Tﬁ = PT;P and (3.1)(iii) implies that the opecrator

h
(D _ordyr 2 - : =
T, (&)= [EEJ Th(t) : L7 » 5 exists for any % - 0. We let L, (t)
% (L, () + Lﬁ(t)) and %h(t) = (ih(t))_lp, for 0 < t < 1 and note that thesc

selfadjoint operators are smooth in time and satisfy analogues of (3.1). Sinc

(LhW,€) = (£h¢,¢) for ¢ < S we also see that

hl

2

ter? < cc'Bleswy < o Bl nel forann v s

h
Thus, UT, (&) < C and T, (0)l < C for 0 <t< .

We now use the family {Th(t)} to define an approximation to the solution u
of (l1.1). Choose a Y, € Sh (which should be thought of as an approximatior to the
initial data function v € L2(Q)) and let w o« Cl([O,T],Sh) be the solution of

(3.2) uh,t + Lhuh =0 for 0<t<t and uh(O) = v

or equivalently,

(3.3) Thuh,t + w = 0 for 0<t<Tt and uh(O) = vy

The function uh(t) is our semidiscrete approximation for wu(t). A possible choice

for vy might be Pv. We will discuss other possibilities in a later Section.

We now study some properties of the solutions to equations like (3.2). We will
include estimates of the time derivatives of such solutions that are independent of
the dimension of Sh' To enable us to obtain these estimates, we will assume,

throughout this Section, that the following hold for 0 < s,t < 1

e o o, i on M @er < c @) for s 0,
Bh
IIG(U(t)\’JIIZ < C () (L (t)¢,¢) for £ >0 and ¥ ¢ S
h - B h ! ) h
W . ay”t . S
where Gh = (az] Gh. Straightforward calculations show that Condition Bh then

holds for the (ih(t)} family with, perhaps, new constants.
We note that (3.1) and Condition B_n imply that we can use the work of

Sobolevskii {10} to study a fundamental solution operator for (3.2) and be assured of




| i
{ g
!

dimension independent estimates. Thus, there is a family of operators Uh(t,s) G

Sy defined for 0 < s < t <1, that is smooth in s and t for all 0 st

and that satisfies the following for 0 < s < ¢ <t < 7: ii

+ L =0 , - UL = ,
Un,e * Ip (80U, Uh,s T Uptp (sl = 0

! (3.4) 3
F Up(sis) =T . U (6,6)U (E,5) = U (£,5) . ;
l' (m) "
: We will write U7 (t,s) = (37) U (t,s) for 0<s<t<t and m» 0. If

;lh € Sh and fh 3 C([O,T],Sh), then the following generalization of (3.2):

(3.%) W *Lw,=f for 0O<t<t and w (0) =w

1
has an unique solution W < C ([O,r],Sh) given by

e e

t
= » + !
(3.6) w (£) = U (£, 00w fo Uy (t,8)f, s)ds

If m>0 and 0 <s <t <1, we also have that

(3.7) IlU}im) (t,s)Pl < c(e - s) "
F Versions of (2.17) and (2.18) hold for U, and lead to certain estimates. For 3
3 ]

instance, if 0 <t <71, m>0 and ¢ ¢ Sh’ we have that !
F e o™ 0 L o™ 0 = - T [M) L0 g0 g o N
: (3.8) (1) U ,0) n N ,0) = ) ol (v, " (e, on §

2=0
m+1
(3.8) (ii) e oo™ e,00el < c 5 1o (6,000
h h - h
£=0
We now define operators Aém)(t) on Sh' for each 0 < t <1 and m > 0,
‘ (m) _ (m) () _ .
‘ that satisfy Uh = Ah Uh. Let Ah =1 and, for m> 0, let
(m+1) ¥ofm) meny ()
‘. A, (&) = - ) [Q] Ly (£)a " (1)
. 2=0
(3.9)
__ am (m)
= A (f)hh(t) + (Ah e

—21_




(m+1)

(where the alternate characterization follows from the observation that U =

(U}:m))t and a soon to be noted proof of the

that

(m)

h

invertibility of Uh)' We also have

(m)

A LE) = <—Lh<t>)‘“ + R (E)

where Rh (t) 1is a linear combination of operators that are at most an (m - 1)-fold

(+)

(.

product of Lh )—ouerators, includinag at least one time differentiated operator.

If we let L (t) - L*(t - t) for O <t <1, we see that these operators

h h

satisfy all the assumptions we made on the family {Lh(t)}, with the same constants.

We can thus define an associated fundamental

S .o (m
tiation operators tAh .

(3.10) U*{t,s) = U (T -~ 5,1 - t)
n O

solution operator Gh and time differen-

We alsc have that

for 0 <s<t<T .

We can also use the energy technijues of Section II to derive estimates. Let

;h(t) H Uh(t,S);h(s) for s <t <1 where 0 < s <1 is fixed and Q#s) € Sh and
let K = sup (L (Z)ll. Then since
h 0<i<t Lh
JLldy= 2 - - B -2
0=3 dtu wh(c)H LW aw ) (k) 2 (0T Wt Kh)HwhH y(£) for s <t <t ,
we can conclude that U;l(t,s) : Sh -~ Sh exists for 0 < s < t < 1. We can also

, provide an Sh—analoque of Proposition (2.2},

- Ll
(3.5) where wh(O) = wh = (0 and fh = CT ({0,

In fact, if wh € Cl([o,'],Sh) solves

r],Sh), we have the following for ¢ > Q

(3.11) Hwh(t)H < C sup H(Thfh)(s)H + ¢ sup H(Thfh)s(s)H for 0 <t <71 .
O<s<t D<s~<t

To prove this result, we first note that Sh—analoques of (2.7) through (2.10) hold

and that, because of Condition Bh,

= (1) Y S D Y
' |(Th ww )| o= |(1.h Thwh,qhwh)|
(3.12)

o (T ARERTALE

1A

< Ce_llw H2 +C(T w
"1 'h h

h h h'h""h h h

h''h

the following holds for every ¢ . > O

1

. -
w ) C(Thwh,wh)

) .

o



Then since analogues of (2.12) through (2.16) hold, we can prove (3.11). The proof of
Froposition (2.4) and the invertibility of the

Uh operator than shows that if m > 0,

(3.13) (m) '

R m
(t = s)lu " (ts)vl o ]
J

Ial3)
=0

Ah (s)ell

for O <s <t <71, 0<f «<m and ¢ ¢ 5}.
I = — — - N

Thus we have (dimension independent) estimates for the solution of (3.2)

(and (3.5)).

. - a : u = —1 "
wow let : Lh(t) + K on Sh and Th'+(t) B (Lh,+(t)) F
- If we define operators A(mi

h (t) for m >0 and

using the Sh—analoque of

(2.24), we see that an analogue of (2.25) holds

Also, the invertibility of Uh shows that an analogue of (2.26) holds in

Finally, we can use the techniques introduced in the proof of Proposition (2.7)

to show that an analogue of Prowosition (2.7) is valid in Sh. If m>0 and

. P . . (e} m .

- ) is sufficiently large, there are invertible operators {Eh +(t)}‘_0 on sh
t “=

for o 7t <71,

given by an appropriate modification of (2.27), that satisfy

R m_{m) (1) .
(3.14) (t) = (-1) Eh,+(t) PR Eh,+(t) for 0 <t <1

(m) 1

- = (m) .
h,+(t)J and note that ”Eh,+ ()Pl < ¢ for

(A




IV. Error Estimates
We will now studv how well the semidiscrete approximation 'L(')
the solution u(t) of (1.1}, given variocus conditions. We will continue €0 1+,
that the family {Th(t)) satisfies (3.1) but we will no lonaer assume * ar
Eh necessarily holds. We recall that the semidiscrete approximation ﬂh

defined in (3.2) {or (3.3)), where vh = s is thoucht of as arn aj:

tion for v. We now let e(t) = uh(t) ole)y © AT - TF)U(])(L)

0 <t < 1. Note that

{(4.1) for 0 <t <71 .

We will analyze this error equation in a manner suggested by work in [3].
Our main estimate is given by the following:

Proposition (4.1): Suppose that e and ¢ ¢ Cl({O,T},L2(T)) satisfy (4.

that for any 0 < § < 1, there is a C = C(d) > 0 so that

.= - 2
(4.2) :(Tél)(t)g,g)| < 5"9”2 + C(G)(Th(t)g:G) for g < L7(1) and C <

Choose p =0 or 1 and if p =1, suppose that Condition Bh holds. Then for
any < >0 and 0 <t < 1, we have that
£+l

.3 ey < a (Tﬁpe) (0M + C(p sup Ho(sil + sup sThp(s)l + ¢ sup &
Ois:t O<s<t Ois:t

t
where o(t) ~ f n(s)ds for 0 < t < 7.
0

We note that (3.12) shows that Condition Bh actually implies

m/

2
Proof: Let w(s) = s e(s) where m=0 if p=0 or m= 3

m/2

(4.4) s SO+ % s(m_z)/zT

e for 0 < s <

where w(0) is e(0) if i m = 3, Let af(t)
defined by
Fe(0) if

(4.%)
0 if




PSR

Thus if w Z a + b, then

m/2 Oe(0) if
(4.6) les + b =5 o ; b(0) =
! 0 if
Note that sm/zo - b ¢ Sh and that
m/2 - m/2
= - = V- G
(4.7) Pbs Lh(s ol b) Lh(s & b) + Gy

. 2
Thus, if we extend G to an operator on L (i)

G, F, we have
" by the formula Gh " we 1l 3
that
- m/2 m/2= =
.8 + = - T.G b, 0 .
(4.8) Thbs b s o+ s Thth wh for <5 <7
Let 0 <t <t and €, > 0. We can use (4.2), (4.6) and (4.8) and the fact

1

that (ihb,b) (0) = O to show, as we did in the proof of Proposition (2.2), that

(4.9) Ib(oi? < c( sup sMp(sih? + ¢

OiS:t O<_Sf_t

(s

m = 0 i
m= 3 f

3
m/2 k
/ o - b) . L

sup s 21o_t91%)

Thus if p = 0 (so m = 0), the fact that fa(t)ll < ire(0)

the proof.

If p=1(so m= 3), we use (4.5) to see that

1 d 2 _m (m-2)/2
- . + 3 == =3 ’ £
(4.10) (ThaS as) 5 33 N all 5 S (The as) or O
We now use uvu: usual techniques to show that if €y > g, t
m=-2 m=-2
2 2 *
S (The,as) = 5 (LhThe,T a )
m=-2 m-2

=5 2 (L,T.e,T.a) - s 2 (G T e,T
h'h '"h's h'h ""h

LA

- m_2 -
- (L + T e,
&2( hThaS,ThaS) Cs (Lh ne The)

2 m=-2 2
+ T G, T el
c2H hasn +Cs nThe

| A

a}
S

allows us to complete

m-2
Ccz(Thas.as) + Cs (The,e) for 0 <s <1 ,




i ol o A = )
since T vl” < ClL, T, # Ty 9) = C(Thw,v) for v « S, and

2 - ” ]
NG, T well™ < ClL, T ¢, T, ¥) = C(Tv,¢) for ¢ « 5

n’ T

Thus, we can show the following:

t
(4.11) tatel? < c [ se,m e)ds
0

Since the error equation implies that

_1a 2 oy
(Thes,The) + (e,The) = 3 3s HTheH + (e,The) (Th e,rhe>

= (,Tye) for 0<s<r

and since (using Condition Bh) we have that (Tél)e,The) < CHTheﬂz, we have the

following:

t t 5 t 5 2
(4.12) [ ste,relas <c [ NTelas +c | s7lpl“as
0 h R 0

We now note that T, e + e = (T e) + e - T(l)e =p for 0< s < 1, which
h's h™'s h -

implies that

‘ ¢ ENED
(4.13) Te+ [ eds=0+ [ T ~'eds+ (Te)(0)
] h h h
k' 0 0
Thus it follows that
I
| t t t t t
- 2, 4d = 2 (1 ¢

i el ™ + -+ (fo e, T, fo e) + Mfo el “ = (o + j’o T, e + (T, e)(0), Te + Jo e)

t - J_1: (1) t
+2(] e, (. -~The) + (] T [ e
o] h h 0 h 0

If <. > 0, we can use Condition B to see that

3 h
t t t
‘ 6+ tiPes meromer e <cnel® s f o’
0 0 0
| 2 2 t 2
‘ +clol® + di(T el (O + ¢ [ U el®ds
h 0 h
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and we can (again) use an estimate suggested by (2.13) to see that

t t
(f e, (T, - T )e) = ( e,T,G, T e)
0 0 |
t t _
< c({) e, T, (t) {) e) + (T, G T, e,GTe

A

t _ t 5
c(f e, [ e) +ce T el
0 h 0 3 'h

Thus, if 53 is sufficiently small, we find that

£ 2 o2 2
(4.14) [ N el“as < c [ lloli“ds + cthiT, (O)e (O)ll
h - h
0 0
We now use (4.9) through (4.14) to complete the proof.
Thus we see that if we want to estimate [lu - uhH under various assumptions on
v, it suffices to estimate quantities involving p = (T - Th)ut and its derivatives.

We will assume that the following estimates hold throughout the remainder of

this Section:

. . L
f There is an r > 2 so that if g < H for some
Ah 0<% <r=-2 and p >0, then

)

H(Tép)(t) - P eyal < CA(p)hl+2NgH£ for 0<t<T .

If we set p = 0 1in the above inequality, then we are stating the usual kind

of approximation assumption for Galerkin-type methods. We will show in a later

e e vt e ettt o iaa? P

Section that the inequalities are also reasonable for such methods if p > 0.
4 Our first application of Proposition (4.1) will be a preliminary result for

smooth and compatible data v. We will need Condition B described in Section III,

he

if we wish to analyze the convergence of time derivatives.

‘ Proposition (4.2): Let m > 0 and suppose that we have one of the following if m = 0:
(1) Condition Ah holds for the (%h} and {T} families and h > 0 is

‘ sufficiently small,

-27- :
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(ii} The following estimate holds for some ' > 0

(4.15) }(Lé“ ()] <ol toe,e)| forall or et and

or (iii) Condition Bh holds.

If m> 0, assume that Condition Bh holds. Fix 0 < i < r - 2 and supp .o that
s 2

v o D(A(J)(O)) where 2 =m + —%gu Then

( ({

m) m) 42
Ha™™ e) - wo (el < ch Il"“n+2+2m

(4.16)

m
(3 N G))
+c §otag v, - Pa 7 (@)W

j=0
Proof: We will use Proposition (4.1) to obtain this result. We first note that 1°¢

we have Condition Ah for the barred families, then

(1)

@ Va9 < anlig? + @

g,9) < Chzllgll2 + C(Tq,9)

<_Ch2||ql|2 + c('}hg,q) for q « t’@) and o0 <t<n

Thus (4.2) would hold if h was small. If (4.15) holds, then

=(1) - - 2
i(T]i 9.9} <c }(LhThg,Thg)] = C'(T,9,9) for g 1°(2) and 0 <t ¢

Finally, if Condition Bh holds, (3.12) implies (4.2). Thus the hypotheses of this
Proposition imply (4.2).

We now observe that if O < t < 1, then

2, A

ho (el < cn® Au™M o, < e Aaon,,

1+2
oo v

5
(1)

(1)
dlpt(t)ll < di(T - T )utll

f+2
s - Tou ch T

Thus Proposition {4.1) implies that le(t)l i_Ch£+%lﬂ|Q+2 + TPels)ll  for any

0 <s<t<t. Wecannow let s > 0 to obtain our result for m = ', Since

.

Ve DL' we also find that

242
. R
NTheJI < Ch i.d\l+ + dlvh pvii  for ©

1K
[ad
P~
—

2
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We now proceed by induction. We assume that m > 1, that v « D(A *(0))

+2
where « = m + &E—. and that

(p+1) 2+2 (3 _ onpa )
3 (4.17) T e < en™ vy ooy * € jzo la "' (v = PA"(0) v
. (m+1) . L
for 0<p<m-1 and 0 < t < 1. Since v ¢ D(A (0)), we can differentiate
the error equation and show for 0 < t < 1, that
(m . _(m _ (m (1) m "5 fm] Lime3) (5+1)
(4.18) Thet + e =0 - mTh e - jZo [j} Th e

We now apply Proposition (4.1) in the manner described before and show that the

following holds, for «¢ > 0 :

; (4.19) te ™ oyl < cn®™* 2l +ce sup hre ™ (s
; - L+2+2m 0<
<s<t
m N .
v 7 a3 o, - 2a? (o)
. h h
| ] j=0
42 1 (m)
< ch il + = sup lle (s)
< w2sam © 2 S0
m . .
+c 7 ||A}(1))(O)v - ou .
30 "

The estimate given by (4.19) implies (4.16) and we can return to (4.18) to

complete the induction step. This completes the proof.

We will now describe choices for vh that will obtain O(hr) convergence for

the error and some of its derivatives if v is sufficiently smooth and compatible.

The description will be easiest if we only wish to describe the error and one time

derivative.
Befoi» we give this first result, we make an observation concerning the map
k ‘ P {t) I T (LY D, * Sy defined for 0 < t < 1, often known as the "elliptic

- projection." By our approximation assumption Ah' we know that

-29-

SRR AR ~, Ry L SN A Ty .




- 242
fw - Wil = IH(T - 7 )Lwll < ch ||wllh2 for 0<t<t

. L+2
if w- H fa DL for some 0 < 2 < r - 2 and hence that

2+2

Hw - pell < llw - lell < Ch ““’“mz for 0 <t <t

£+2)

Corollary (4.3): (1) Suppose that v ¢ D(A 2 (0)) (¢ H2+2 n DL) for some

0 < 2 < r -2 and either (i), (ii) or (iii) of Proposition (4.2) holds. Then if

- = p_(0) . s is ch that | vl < en* 2
Vh = v or Vh = 1 v or Vh < h 1s chosen so a Vh < 1+2’
we have that

(4.20) flute) = w (o)l < o™ g4 for 0t

L+4
(2) Suppose that Condition Bh holds and v € D(A 2 (0)) for some

: 2 2 .
< - = =
0 < 2 r 2. Then if Yh Pl(O)v or v Th(O)L (0O)v or vy € Sh is chosen
242

so that Ith(O)vh - L(o)vll < ¢ch Ildll+4, we have that
@20 B - w ol i@ - w P en <o, for o<t
Proof: Part (1) follows easily from Proposition (4.2). As for Part (2), we see

that

th - PlvH < CIILh(O)(vh - Plv)H < C(lth(O)Vh = LO)yvil + 11 (p - DYLO)VI

The result now easily follows from Proposition (4.2}).
We now wish to study approximation results for higher time derivatives. To
describe and prove such results, we first need to study some properties of the

a0 o)1, ana {a'?)
+ ]_

>0 h,+(0)}j10 operators. We have the following analogues of

Condition Ah.

Proposition (4.4): Let K > 0 and suppose that Condition Bh holds. Then, if

2
g e H for some 0 < 2 < r - 2, we have that

=30~
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(4.22) (i) I (T(p) @ - 1P (gl < cEn** gl for 0<t< T and p > 0;

that is, we have Condition A ~ for the (T+(t)} and {Th +(t)] families. More-
’
over, if K 1is sufficiently large, we also have that

(4.22) (ii) 1 (E;‘f) we - £, P gl < cn** gl, for 0<t<t

)
Proof: If K >0, 0< t<t and g ¢ H for some 0 <% <r - 2,

g = L+T+g = LT g + KT g. Thus, T,g = Tg - KT T g and similarly,

= - s (p(P) (p)
g = Thg KThTh 9 let p >0, set E = (T+

3y _ (J)

T )g and suppose we know
h,+

242 . . 2
that I (T, Jft<en el if 0<j<p-1 and f ¢ H . Then, since

(p-2) (L) (2)
(Th,+ - T, )9

E- (x® _ (p))g - 2

(p=£) (p-2)., (%)
-KTE+K§[1) -7 )T, g

taking the L2(Q)-inner product of the above with E shows that
L
en 2 < C(K)h 2 glt, MeEl - K(T, E,E) < cnt gll, el

We can now prove (4.22) (i) by induction.
We will also prove (4.22)(ii) by induction. We know that (4.22)(ii) holds
with p = 1. We now suppose we have (4.22)(ii) for some p > 1 and all the

. . 2
intermediate cases. Let O < t< Tt and g ¢ H for some 0 < % < r - 2. If

- (p+ - (p+
K > 0 is sufficiently large, we can set w - E+(p l)g, vy E+(p l)Pg

and
p-2
Rz § (-1

41 [ -0 -
)P j+l lp) L, T<p 3 = (3+2) g~ @)
3=0

3 . -ee EL
and let R.h be R's counterpart on Sh. Note that

_ (1) _ _ .,
w = T+g p T+ w T+R+w and wh = Th g P Th + h Th,+Rhwh

K 1is sufficiently large, we have that

Gl (A 1y T s ey st e

R st T — - e -




1) (

11))wH

(
Hw = whH < cliher, Th,+)g“ + H(T+

(l) e e 11
+ H(T+R Th,+th)w” + HT - wh)H + ”Th,*RhI(N Nh)J]

cc@n™ g+ v -wi o+t R-T R P
- g 2 h + h,+ h !

p=2 s ~
REvl < c Jotr P o q (P, m 002

(TR - Th,+ ‘ h, + =l
3=0
R I I R N UL
LG Ah Ah + h,+ + + + d
i=j+2
2+2 2+2
< c(x)h™ “lwll g2 S C(K)h Hglln

: This gives (4.22)(ii) for p + 1, which gives the induction step.
3
1 We can now complete our estimates for higher derivatives of the error when v

is a sufficiently smooth and compatible function.

Theorem (4.5): Suppose that m > 2, Condition Bh holds and v ¢ D(A(a)(o)) where

a=m+ &%3 and@ 0 < 2 <r - 2. Let K >0 be sufficiently large and choose

S
wh € h so that
(4.23) e, - 2™ @l < cn®* v ;
: h + g+2+2m '
for instance, let w,_ = PA(m)(O)v or P (O)A(m)(o)v Then if wv_ = -(m )(O)w ,
’ h + 1 + : h h,+
we have that
T (3)
(4.24) jzo u™27(e) = w2 (ol < cnt ||v||l+2+2m for 0 <t <1

Proof: Proposition (4.2) and (2.26) and its S -analogue show that it suffices to

h
3 know that
' (3) _ (j) = (m) , (m) 242
Ah +Ah ARy vil < ¢h "V"1+2+2m '
‘ for each 0 < j <m - 1. But (4.22) shows that the following holds for 0 < j <m -
and g € Hl

S

e a1 i




(3) = (m) (3),=tm) . 9+2
llAh’+Ah'+ Pg - A A gl < ch llglI:
o (3),~(m) . .
Since I +Pn,+ Pl <C for 0<j<m=-1 and
(3 242 .
I - Da vil < ch IIvIIR+2+2j for 02j<m-1 ,

we have our result.
We now will discuss convergence results for the error and its derivatives when

. . . 2 . , .. . R
v is no more than a function in L (). We will limit our choice of initial data

for the semidiscrete approximation to vh = Pv  for these nonsmooth data results.
Theorem (4.5): Suppose that Condition Bh holds. Then if vh =Pv and m > 0, we
have that

T (3) (3) r -r/2-
(4.25) T - u ol < ot vl for 0 <t <1

3=0

Proof: We begin by noting that the estimates of Sections II and III and density
o=
arguments allow us to assume that v ¢ CC(Q). These estimates also show that we can
2
assume that h < t.

We now use Proposition (4.1) with p = 1. Since
t
lo(eyht =Nf (T~ T (s)u_(s)dsl
o h s

t

<heT, - DuEl + i, - Dao + [ e
h h 0

h T T(l))unds

< ChZHvH for 0 <t<rt ,

and similarly, tip(t)ll + tZHDt(t)“ j.Chzﬂvﬂ for 0 <t < 1, we see we have shown
that

(4.26) lu(t) = u (O = 1 (U £,00 - (£,0P)v < ch?e Y

for 0 "t < 1. Thus we have shown (4.25) for m=0 and r=2. To obtain (4.25) with
m > 1, we will need to use this result and our previous smooth data results in a

bootstrapping argument. We will also use a special representation for smooth and
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compatible functions. (This representation was used in a slightly different context

in [1]). Suppose that p > 1 and W ¢ D(A(p)(t)) for some 0 < t < 1. Then, if K

K > 0 1is sufficiently large, t
(4.27) w = A;(E)PAip)w NG E;(i)P)Eil)w
p . . . .
-(j-1) =(3) _ ~(3) (3)
- jgz Ah,+ P(E, Eh,+ P)A, " w

2
Let 0<p<m O<h®<tcr, t =t/3,t,=2t/3 and veC,(2. Then

®) (o) - u® (¢, 0)p) vl

h

(

ha P e) - uép)(t)ﬂ =i

(p)

p) _ 4P
(t,t2) Uh

< (£,£,)PYU(E,,0) vl

p)

¢ _ -
+ th (t,tz)PN(H(U(tz,tl) Uh(tz,tl)P)U(tl,O)V)H 1

+ HU(tz,tl)(U(tl,O) - Uh(tl,O)P)v”

+ "U(tz'tl) - Uh(tz,tl)PH HU(tl,O) - Uh(tl,O)PH IFvli 1

+ ct Plterm_ + term

<
< tetml 2 3

+ t
erm4)

By our smooth data results applied with a suitable translation of time zero,

we find that if K 1is large, then !

(p) RS =) B § <D R § <))
term, <llu ult,) -0 Ay, PAL ule )
+ § nulPl a3 p =) Gy a3y ey
551 h h,+ + h,+ y U 2
r -p~l+j. r
S Chllute)l oo+ C jzl t Rl e )b ooy
< e T TRy L

-r/2
We observed in (4.20) that term < ch't r/ livil. Also,

2
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- 23 = * - Uk *| f
rermy < HU(U = U P Il = I U* = Ugpy Ul vl ]

-r/2

= 1@ - 0,PO lvh < ch"t”“llvl

where we have used our adjoint identifications and smooth data results applied to

1 the time-reversed operators. Finally, term4 < C(hzt-l)zllvll by (4.26).
‘. By 1iteratina the above argument up times with p = 0 we find that
: 2. -1 r/2 2 -1 2% 1
' lu(e,0) - Uh(t,O)Pll < C(th’t ) + ('t )Y )y ,
u+l
for any 9 <~ t < 1. We now choose u > 1 so that 2 > r. The proof is then casity g

completed by red .ng the argument once for each 1 < p < m.
We conclude this Section by noting the following result on forcing terms. If
we assume We are given a suitably smooth function wu(x,t) on o ox [0,7] that satisfies

u, + L{t)u = £(t) on . x[0,7] and u(0) =v on Q ,

where f 1is suitably smooth on x(0,T], we can define a semidiscrete approximation

by the following:

+ =P < < d 0) =
uh,t Lhuh f for 0O t <1 an uh( ) Yy ‘
where vy is chosen from Sh- (We note that uh(t) always exists). If we set 3
b‘ e = uh - u, we find that 4
+ = - - f = = - < . 3
1 ! T e * e (T Th) (ut ) (T Th)Lu for 0 <t <1 ;
H
¥ This equation can be easily analyzed by Proposition (4.1). For instance, if we set
; vh = Pv and assume Condition Bh, then

hate) = u (o)l < clwn’

for some constant C(u) depending on the solution.
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V. Examples

We will summarize here some well known results concorning _ovwer ! foete -

3

projection methods and we will give the additional required oofaimat. HE
$ !

methods that will allow us to apply the theory of the preceding zZeotivn.

by sketc..ing some of the common features of the methods.
1 bach method will use a finite dimensional subspace 35 of functions :n '

h

will be associated with parameters O < h <1 and an r > 2 in the fslicwinn

4
. P+
(5.1) min { e =+l = el ) < et
¥ o5y ’
3 140 1
tor all w e H ~ ~H,, where 0<% <r -2 and where H-HI is a (perhaus G- [

dependent) seminorm that will be related to the H-Hl norm but which may contain
other terms dealing with boundary condition considerations.

For each of our coercive differential operators L(t), there will be an

as:ocliated positive form Dh(t)(',') that is related to the Dirichlet form of the

operator and which will be used to define the associated Th(t) operator. Given

2

f - L7(), the function W, = Th(t)f €S will be defined by the following

h 3
cquations:

(5.2) Dh(t)(wh,¢) = {f,g) for ¢ € S

The form D () will be symmetric positive definite if L = L* = L.

The following relations will hold, with certain constants:

(5.3) el el < cp () (v,e) for all ¥oes
(5.4) ' e, ,90 | < e (Dl lig . for ¢ >0
. : “h 1727 - 73 1'1°2'1 - 3
f (0) . |
where g. and g2 € SH + DL and Dh (t){(*,*) denotes the form obtained by i
‘ taking .+ successive time derivatives of the Dh-form. We will also have the ;

following for j > O :
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}
!
(3) ~ 1)
e wg) - o7 v, g)
h T I
(5.5) o . AR RIS \wh’*z‘g - z||I
](g,L* Py - D.'] C1,w)
H
hy w Hl?'+2 no for some 1 - o~ s+ L and z D ie
where « L . . -~ i *h A‘L g L <
arbitrary. (Thus we will "almost" o able to inteyrate by parts). Finally, we will
have that
d 1 3
= g
. t)y = . D ¢ = 0. : ¥ o 1
(5.6) Gh( ¥ P(_L aol(t) T3 (,/' jxa!)i(t))*) for Sh ' ]
i=1 i=1 5
2 . . 2, . ,
where P : L (1) - Sh is the usual L ()-orthogonal projection.
We will now list what the [l I-seminorm and the Dh—form is for each mcthod.
We will then go on to prove the necessary stability and accuracy results. (There
are references given in [2] and (3] for the various methods. We will not repca.
them here).
(1) 3Salerkin's Method for the Neumann Problem:
In this case Dh (t) = D), H-J.'I = JJ-Ul and C_, can be taken to
be 1,
: (2) Galerkin's Method for the Dirichlet Problem:
Now we must restrict Sh to be in H(];. Thus boundary conditions 3
are required of functions in S,. Again Dy, (t) = DI(t), II'HI = II-IIl and
c, = 0. e
. (3) A Method of Nitsche:

This is a technique for the Dirichlet problem that does not require

that Sh lie in Hi. The norm and forms for the method are as follows: E

3
i

H g 3 2 _1 ..
Dh(t)(-,-) I D(EY(e,) = ¢ ,31 (-))—(;E(), Y+ 2h e, e

2 2 -1 2 ¢ 2 2

. 2l . . . I«
‘ L N R N N L

3 -
‘ where 3[—1— denotes the conormal derivative associated with L(t), (')n
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denotes the normal derivative, CI and CII are certain constants and

> 0 1is sufficiently large. The following inverse assumption is required

on Sh as well:

-3 -1
» P <~ e
1 Mrlllo'm ””1,3,’2 <Crfh I»«lll + h Ty

We note that we can take C, = O.

Another Method of Nitsche:
This is another method that handles the Dirichlet problem without

requiring that Sh lie in Hi. The method is the same as the previous

one but 3 may be taken to be zero. However the following "almost zero

boundary conditions" restriction must be put on Sh

3
< Cph H¢Ul for all ¢ € §

ll\;'llola'rz n

where CIV is sufficiently small.

A Lagrange Multiplier Method of Babus$ka:
This is yet another approach for approximating the solution of the
Dirichlet problem without imposing boundary conditions on functions in

S

< The space S is constructed in a special way so as to agree with a

h

Lagrange Multiplier formulation that would be used in practice. We will

not detail this construction here, but note that the key to the boundary

- . . . ; 242 1
conditions is given by the following estimates. If w ¢ H n Ho where

[ - S+ i i
n < Tr 2, g « Sh DL and z ¢ DL is arbitrary, then

n,D.w,g - z),

d
i 4147175

d
a..nDwagd = i€}
1 13 j=1

j
ccntNwi, g -z, for 1<i<d
< wh, o9 z 1 or <ic< ,

due to certain boundary approximation properties. We use Dh(t) = D(t)

and H'HI = H'Hl for this method and (5.5) follows from (5.7).

C T
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‘
N e e

14
i
’
W will now prove estimates that will hold for any approximation method that is
defined by (5.2) where (5.1) and (5.3) through (5.6) hold. We first see that i
(3] L 6-i) (1) 1) 241 H
(5.8) li-zeo [1] by (t)((Th (t) - T (t))f,¢2)l<_ CC,JW2 -zl Ih e,
3) ) (5) i
J = pHY s o) = (0. ,L¥Y , ;
(5.9) (Lh (t)\;lnpz) = by (t)("'l"z) (vl,Lh (t)yz) .
4
. 2
for ]>_0,0<_t<_-r,¢,~1,¢255h,z€DL and f € H, for some O < % <r - 2. ;
The following is our main approximation result.
Theorem (5.1): For m >0, 0 < L <r - 2 and 0 <t <T, we have that
(5.10) I (Tém)(t) - ptm ®NE < en®*Yy fll, for £ ¢ g,
0 % b
(5.11) 1™ e - 1™ ena < ohia, for £en :
£

Proof: W will first prove (5.10) and then we will use a duality argument to prove

and w}:j) z T(j)f

v L0 2 ), !

(5.11). Say 0 <2 <r=~2 and f € H. Set
for 0 < j <m lLet iv}f:') € s be the function that attains the minimum in (5.1)

when we repiace W by w(J), for each 0 < j < m. Then

S

(m) (m), 2 . (m) m) , @) () ;

CIIWh - Wy I 1 < Dh (wh Sy W -y )

(m) (m) (m) (m) . (m) (m) 2+1
< Dby (Wh -w o, (”h - Wy, )+ cc*llwh - Wy 1l Ih IIflIE

: mlm) mei), G) ) L m) )
+ ]_Z- [J] Dh (wh -w N - )I
=0

<ate™ oo™ et ien . mil e - WOy
=5 ho1 27k “n I

This can be used to show (5.10) for all m > O.
. A * (m) (m)
Now we use a duality argument. let 2z ¢ DL satisfy L z=w - wh and
" h
by z. Then

‘ let Eh € S be the function that attains the minimum in (5.1) when we replace w
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m) _ m)y2 _ @) _ (m)
I w Wy " = (w W, ,L*z)
_ ‘/“ fm] W) 2,0 prme) m7-1 (m) G RINE C PR P
- j h ' L | 2
j=0 U j20 13 |
m . m .
l b e G 0 e T DR
- {ij h ' h x L h ,
j=0 =0 ) K
+ [}I:\ [m} D(m-j)(w(]) W(]) 2. ) + C m:l 1 (]) “(j)u Iz
. - , ; _ L .
j=0 3 h h h j=0 h <
. m-1 . .
<@™E, v 7 onw?) . w ™y
3 5o

This can be used to complete the proof.
We also have the following:

Proposition (5.2): If % > 0 and 0 <t < 1 =hen

@) g2 el ere . y

(5.12) ”Gh (t)ell <_C(Lh (£)¥,¥) = C(Lh(t)v ,¥) for all v <« Sh f

Proof: We see that if ¢ ¢« Sh ’ i
iy wrel? < avn? < el < cary e,

We will now study the remainder of Condition Bh, using inverse properties
(as was also done in [7}).

i Proposition (5.3): Suppose that

(5.13) el < chlel for all ¢ ¢ s,

Then for ¢ > 0 and O < s, t < 1, we have that

() (2)
(5.14) Iy, ey s, ||Th(t)Lh (s)Plh < C(®)
1
Proof: If g ¢ L2 (), ¢ ¢ Sh and % > 0, then :
' L T s)1g.01] = [ ) ((r, (s) - Ttshg,e) | + [p' ) ) (Tis)g, )] j
h h ! h h ! h T :

)

(2 , ,
< T, (s) = Tis)gll Ml + [ ™ (£)Tis)g,¢) | + il T(s)glh Nl Co

< cligll el . &
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4
4
This suffices to prove the first part of (5.14) and the rest of the proof follows
by considering the adjoint problem.
. -2
We note that if we have (5.13), HLh(t)PH < ¢h for 0 <t < T. l
G Thus we can now apply the analysis of Sections II through IV to many Galerkin-
b type projection methods.
}
i
'
i
|
1
i
:
l
n
)
4 4
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VI. Maximum Norm Estimates

We will now examine how we can use our L2(i)-based estimates in conjunction
with maximum norm estimates for the associated elliptic problem to prove similar
maximum norm estimates for the parabolic problem. We will use techniques similar to
those introduced in [3]

We first studv global maximum norm estimates. We assume, as usual, that we have
a family of operators ‘Th(t)‘ that satisfies the properties listed in (3.1) and
the approximation assumptions Ah' We will also assume that we are working in
d=1, 2 or 3 space dimensions and that Sh < C5(3) for some constant 0 < § =< 1;

that is, the functions in Sh are HOlder continuous with exponent § on Q.

Finally, we will assume the following inverse property on Sh

(6.1) I i <claon VPN, for D <e<é and ¢ €5 .

ci h
To obtain maximum norm estimates for the parabalic problem, we need to know some
corresponding estimates for the elliptic problem. We will assume the following:
There is a function Yp(h) so that if T(t)f ¢ w*”  for some 0 <t <,
we have that

(6.2) ||(Th - T)(t)f"o,w < Yp(hH‘T(t)f“p,w .

where p=2 or r .

2- :

We will also assume that 72(h) < Ch n for some n < %u Work in [4] or [9]) done
2

under various conditions suggests that we could take yz(h) =Ch, yr(h) = cht  if

r>2 and v,(h) =y (h) = cl1og hfhz if r= 2.

We note that these conditions imply the following:

. - _ . .
“Th'"o,» - II(Th T)¢H0,m HT.NO'W
oy (Tel, o+ Al 2oy mliell + cliell
2 2 2702 c tem
~3/2-¢
< (Cyzrh)h Lol - clie
where 0 < ¢ < min ( L. %) and ¥ ¢ S .
‘ 1 - 2 ! h
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If we define uh(t) € Sh via (3.2) with some choice of v,_ ¢ S as usual, then

(4.1) shows that if 0 < t < 1,

(1)
. - - +
(6.3) flu(t) uh(t)Ho,w < hA(r Th)ut"O,w HThPe "O,w t
(1)
< y_(flae)l + Clie .
- 'r r,®
We can now use the results of Section IV to further analyze (6.3). For instance, :

if we have Condition Bh and we set v, = Pv, we find that

r
(6.4) la(ty - uh(t)ll s ele)ly (h) +h Wl .

for 0 <ty <t < 1. Other results can also be formulated for sufficiently smooth
and compatible v.

Similar estimates can be done in the interior of Q if the appropriate estimates

are known for the {Th(t)} family.

_43-




1]

(2]

[3]

[4]

{e]

(7]

(8]

(9]

(10]

REFERENCES
Baker, G. A., bramble, J. H. and Thomde, V., Single step Galerkin ai:rox,: (.
for parabolic problems, Math. Comp. 31 (1977), pp. 519-3247.
Brampble, .J. H. and Osborn, J. E., Rate of convergence estimates for nor-
self-adjoint eiqenvalue approximations, Math. Comp., 27 (1973), (i.. *J0i="4-
Bramble, J. H., Schatz, A. H., Thomée, V. and Wahlbin, L. B., Some —onvirms.:..
estimates for semidiscrete Galerkin type approximations for parabolic ¢ juati-:-,
SIAM J. Numer. Anal., 14 (1977) pp. 218-241.
Goldstein, C. I. and Scott, R., Optimal L” estimates for some Galerki:
methods for the Dirichlet problem, Brookhaven National Laboratory, Ucton,
New York, 1977.
Helfrich, H. -P., Fehlerabschdtzungen fur das Galerkinverfahren zur L8sung vcr.
Evolutionsgleichungen, Manuscripta Math., 13 (1974), pp. 219-235.

Lions, J. L. and Magenes, E., Nonhomogeneous Boundary Value Problems and

Applications, I, Springer-Verlag, New York, 1973.
tassif, N. and Descloux, J., Stability study for time-dependent linear parabclic

equations and its application to Hermitian methods, Topics in Numerical

Analysis III, (J. Miller, Ed.), Academic Press, New York, 1977.

Sammon, P. H., Approximations for Parabolic Equations with Time Dependent

Coefficients, Ph.D. Thesis, Cornell University, 1978.

Scott, R., Optimal L estimates for the finite element method on irregular
meshes, Math. Comp., 30 (1976), pp. 681-697.

sobolevskii, P. E., Equations of parabolic type in a Banach space, Trudy
Moscow Math. Soc. Obsc., 10 (1961), pp. 297-350; AMS Transl. (2), 49 (1960),

pp. 1-62.

PHS/ck

-44-

o TN ot s e ™ - - - -




o T U

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEP OB COMPL BN o

1. REPORT NUMBER 2. GOVT ACCESSION NO.[ 3. RECIPIENT'S CATALOG NUMBER

2053 AD-ACEL 36

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Convergence Estimates for Semidiscrete Parabolic |Summary Report - no specific

Equation Approximations reporting period
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(®) 8. CONTRACT OR GRANT NUMBER(s,
M7S78-09525

Pet H. S
eter ammon DAAG29-75-C-0024

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::22R&AwOERLKESEINTT'N‘TJRMOBJEERCST' TASK
Mathematics Research Center, University 'of | Wwork Unit Number 7 -
610 Walnut Street Wisconsin Numerical Analysis

Madison, Wisconsin 53706

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
March 1980

See Item 18 below. 13 NUMBER OF PAGES
44

14, MONITORING \GENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CL ASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTR BUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES
U.S. Army Research Office National Zcience Foundation
P.O. Box 12211 Washington, D. C. 20550
Research Triangle Park
North Carolina 27709

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)

Parabolic Equations, Semidiscrete Approximations, Galerkin Methods

20. ABSTRACT (Continue on reverse side it necesaary and identity by block number)

In this paper, we study certain semidiscrete methods for approximating the
solutions of initial boundary value problems, with homogeneous boundary condi-
tions, for certain kinds of parabolic equations. These semidiscrete methods
are based upon the availability of several different Galerkin-type approxima-
tion methods for the associated elliptic steady-state problem. The properties
required of the spacial discretization methods are listed and estimates of the
error made by the resulting semidiscrete approximations and of its time deriva-

tives are given. In particular, estimates are given that require only weak

(37 ,'°'"‘ 1473 E€01TiON OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

JAN 73
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




ABSTRACT (Continued)

smoothness assumptions on the initial data. Verifications of the required
properties for various Galerkin-type methods are also given.

FN S IR N TR TR PORCEOE I I vl o] AT

e -

T T, S e RVENTORRE NN




